Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HyperGAN: A Generative Model for Diverse, Performant Neural Networks (1901.11058v3)

Published 30 Jan 2019 in cs.LG and stat.ML

Abstract: Standard neural networks are often overconfident when presented with data outside the training distribution. We introduce HyperGAN, a new generative model for learning a distribution of neural network parameters. HyperGAN does not require restrictive assumptions on priors, and networks sampled from it can be used to quickly create very large and diverse ensembles. HyperGAN employs a novel mixer to project prior samples to a latent space with correlated dimensions, and samples from the latent space are then used to generate weights for each layer of a deep neural network. We show that HyperGAN can learn to generate parameters which label the MNIST and CIFAR-10 datasets with competitive performance to fully supervised learning, while learning a rich distribution of effective parameters. We also show that HyperGAN can also provide better uncertainty estimates than standard ensembles by evaluating on out of distribution data as well as adversarial examples.

Citations (58)

Summary

We haven't generated a summary for this paper yet.