Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Combinational Q-Learning for Dou Di Zhu (1901.08925v2)

Published 24 Jan 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Deep reinforcement learning (DRL) has gained a lot of attention in recent years, and has been proven to be able to play Atari games and Go at or above human levels. However, those games are assumed to have a small fixed number of actions and could be trained with a simple CNN network. In this paper, we study a special class of Asian popular card games called Dou Di Zhu, in which two adversarial groups of agents must consider numerous card combinations at each time step, leading to huge number of actions. We propose a novel method to handle combinatorial actions, which we call combinational Q-learning (CQL). We employ a two-stage network to reduce action space and also leverage order-invariant max-pooling operations to extract relationships between primitive actions. Results show that our method prevails over state-of-the art methods like naive Q-learning and A3C. We develop an easy-to-use card game environments and train all agents adversarially from sractch, with only knowledge of game rules and verify that our agents are comparative to humans. Our code to reproduce all reported results will be available online.

Citations (13)

Summary

We haven't generated a summary for this paper yet.