Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian surrogate learning in dynamic simulator-based regression problems (1901.08898v1)

Published 25 Jan 2019 in cs.LG and stat.ML

Abstract: The estimation of unknown values of parameters (or hidden variables, control variables) that characterise a physical system often relies on the comparison of measured data with synthetic data produced by some numerical simulator of the system as the parameter values are varied. This process often encounters two major difficulties: the generation of synthetic data for each considered set of parameter values can be computationally expensive if the system model is complicated; and the exploration of the parameter space can be inefficient and/or incomplete, a typical example being when the exploration becomes trapped in a local optimum of the objection function that characterises the mismatch between the measured and synthetic data. A method to address both these issues is presented, whereby: a surrogate model (or proxy), which emulates the computationally expensive system simulator, is constructed using deep recurrent networks (DRN); and a nested sampling (NS) algorithm is employed to perform efficient and robust exploration of the parameter space. The analysis is performed in a Bayesian context, in which the samples characterise the full joint posterior distribution of the parameters, from which parameter estimates and uncertainties are easily derived. The proposed approach is compared with conventional methods in some numerical examples, for which the results demonstrate that one can accelerate the parameter estimation process by at least an order of magnitude.

Citations (4)

Summary

We haven't generated a summary for this paper yet.