Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

An essay on copula modelling for discrete random vectors; or how to pour new wine into old bottles (1901.08741v2)

Published 25 Jan 2019 in stat.ME

Abstract: Copulas have now become ubiquitous statistical tools for describing, analysing and modelling dependence between random variables. Sklar's theorem, "the fundamental theorem of copulas", makes a clear distinction between the continuous case and the discrete case, though. In particular, the copula of a discrete random vector is not identifiable, which causes serious inconsistencies. In spite of this, downplaying statements are widespread in the related literature, and copula methods are used for modelling dependence between discrete variables. This paper calls to reconsidering the soundness of copula modelling for discrete data. It suggests a more fundamental construction which allows copula ideas to smoothly carry over to the discrete case. Actually it is an attempt at rejuvenating some century-old ideas of Udny Yule, who mentioned a similar construction a long time before copulas got in fashion.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)