Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph heat mixture model learning (1901.08585v1)

Published 24 Jan 2019 in cs.LG, cs.SI, and stat.ML

Abstract: Graph inference methods have recently attracted a great interest from the scientific community, due to the large value they bring in data interpretation and analysis. However, most of the available state-of-the-art methods focus on scenarios where all available data can be explained through the same graph, or groups corresponding to each graph are known a priori. In this paper, we argue that this is not always realistic and we introduce a generative model for mixed signals following a heat diffusion process on multiple graphs. We propose an expectation-maximisation algorithm that can successfully separate signals into corresponding groups, and infer multiple graphs that govern their behaviour. We demonstrate the benefits of our method on both synthetic and real data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.