Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Decentralized Joint Learning of Personalized Models and Collaboration Graphs (1901.08460v4)

Published 24 Jan 2019 in cs.LG, cs.AI, cs.DC, cs.SY, stat.ML, and eess.SY

Abstract: We consider the fully decentralized machine learning scenario where many users with personal datasets collaborate to learn models through local peer-to-peer exchanges, without a central coordinator. We propose to train personalized models that leverage a collaboration graph describing the relationships between user personal tasks, which we learn jointly with the models. Our fully decentralized optimization procedure alternates between training nonlinear models given the graph in a greedy boosting manner, and updating the collaboration graph (with controlled sparsity) given the models. Throughout the process, users exchange messages only with a small number of peers (their direct neighbors when updating the models, and a few random users when updating the graph), ensuring that the procedure naturally scales with the number of users. Overall, our approach is communication-efficient and avoids exchanging personal data. We provide an extensive analysis of the convergence rate, memory and communication complexity of our approach, and demonstrate its benefits compared to competing techniques on synthetic and real datasets.

Citations (72)

Summary

We haven't generated a summary for this paper yet.