Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting PICO elements from RCT abstracts using 1-2gram analysis and multitask classification (1901.08351v1)

Published 24 Jan 2019 in cs.CL and cs.IR

Abstract: The core of evidence-based medicine is to read and analyze numerous papers in the medical literature on a specific clinical problem and summarize the authoritative answers to that problem. Currently, to formulate a clear and focused clinical problem, the popular PICO framework is usually adopted, in which each clinical problem is considered to consist of four parts: patient/problem (P), intervention (I), comparison (C) and outcome (O). In this study, we compared several classification models that are commonly used in traditional machine learning. Next, we developed a multitask classification model based on a soft-margin SVM with a specialized feature engineering method that combines 1-2gram analysis with TF-IDF analysis. Finally, we trained and tested several generic models on an open-source data set from BioNLP 2018. The results show that the proposed multitask SVM classification model based on 1-2gram TF-IDF features exhibits the best performance among the tested models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.