Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SAML-QC: a Stochastic Assessment and Machine Learning based QC technique for Industrial Printing (1901.07370v1)

Published 18 Jan 2019 in cs.CV and cs.LG

Abstract: Recently, the advancement in industrial automation and high-speed printing has raised numerous challenges related to the printing quality inspection of final products. This paper proposes a machine vision based technique to assess the printing quality of text on industrial objects. The assessment is based on three quality defects such as text misalignment, varying printing shades, and misprinted text. The proposed scheme performs the quality inspection through stochastic assessment technique based on the second-order statistics of printing. First: the text-containing area on printed product is identified through image processing techniques. Second: the alignment testing of the identified text-containing area is performed. Third: optical character recognition is performed to divide the text into different small boxes and only the intensity value of each text-containing box is taken as a random variable and second-order statistics are estimated to determine the varying printing defects in the text under one, two and three sigma thresholds. Fourth: the K-Nearest Neighbors based supervised machine learning is performed to provide the stochastic process for misprinted text detection. Finally, the technique is deployed on an industrial image for the printing quality assessment with varying values of n and m. The results have shown that the proposed SAML-QC technique can perform real-time automated inspection for industrial printing.

Summary

We haven't generated a summary for this paper yet.