Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DCNN-GAN: Reconstructing Realistic Image from fMRI (1901.07368v1)

Published 13 Jan 2019 in cs.CV and eess.IV

Abstract: Visualizing the perceptual content by analyzing human functional magnetic resonance imaging (fMRI) has been an active research area. However, due to its high dimensionality, complex dimensional structure, and small number of samples available, reconstructing realistic images from fMRI remains challenging. Recently with the development of convolutional neural network (CNN) and generative adversarial network (GAN), mapping multi-voxel fMRI data to complex, realistic images has been made possible. In this paper, we propose a model, DCNN-GAN, by combining a reconstruction network and GAN. We utilize the CNN for hierarchical feature extraction and the DCNN-GAN to reconstruct more realistic images. Extensive experiments have been conducted, showing that our method outperforms previous works, regarding reconstruction quality and computational cost.

Citations (27)

Summary

We haven't generated a summary for this paper yet.