Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The average order of the Möbius function for Beurling primes (1901.06866v2)

Published 21 Jan 2019 in math.NT

Abstract: In this paper, we study the counting functions $\psi_\mathcal{P}(x)$, $N_\mathcal{P}(x)$ and $M_\mathcal{P}(x)$ of a generalized prime system $\mathcal{N}$. Here $M_\mathcal{P}(x)$ is the partial sum of the M\"{o}bius function over $\mathcal{N}$ not exceeding $x$. In particular, we study these when they are asymptotically well-behaved, in the sense that $\psi_{\cal{P}}(x) = x+O({x{ \alpha+\epsilon }})$, $N_{\cal{P}}(x) = \rho x+O({x{ \beta+\epsilon }})$ and $ M_\mathcal{P}(x) = O(x{\gamma+\epsilon})$, for some $\rho >0$ and $\alpha, \beta, \gamma<1$. We show that the two largest of $\alpha,\beta,\gamma$ must be equal and at least $\frac{1}{2}$.

Summary

We haven't generated a summary for this paper yet.