Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cofiniteness over Noetherian complete local rings (1901.06668v1)

Published 20 Jan 2019 in math.AC

Abstract: In this paper we prove the following generalization of a result of Hartshorne: Let $(S,\n)$ be a regular local ring of dimension $4$. Assume that $x,y,u,v$ is a regular system of parameters for $S$ and $a:=xu+yv$. Then for each finitely generated $S$-module $N$ with $\Supp N=V(aS)$ the socle of $H2_{(u,v)S}(N)$ is infinite dimensional. Also, using this result, for any commutative Noetherian complete local ring $(R,\m)$, we characterize the class of all ideals $I$ of $R$ with the property that, for every finitely generated $R$-module $M$, the local cohomology modules $Hi_I(M)$ are $I$-cofinite for all $i\geq 0$.

Summary

We haven't generated a summary for this paper yet.