Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous Confidence Bands for Functional Data Using the Gaussian Kinematic Formula (1901.06386v1)

Published 18 Jan 2019 in math.ST, stat.ME, and stat.TH

Abstract: This article constructs simultaneous confidence bands (SCBs) for functional parameters using the Gaussian Kinematic formula of $t$-processes (tGKF). Although the tGKF relies on Gaussianity, we show that a central limit theorem (CLT) for the parameter of interest is enough to obtain asymptotically precise covering rates even for non-Gaussian processes. As a proof of concept we study the functional signal-plus-noise model and derive a CLT for an estimator of the Lipschitz-Killing curvatures, the only data dependent quantities in the tGKF SCBs. Extensions to discrete sampling with additive observation noise are discussed using scale space ideas from regression analysis. Here we provide sufficient conditions on the processes and kernels to obtain convergence of the functional scale space surface. The theoretical work is accompanied by a simulation study comparing different methods to construct SCBs for the population mean. We show that the tGKF works well even for small sample sizes and only a Rademacher multiplier-$t$ bootstrap performs similarily well. For larger sample sizes the tGKF often outperforms the bootstrap methods and is computational faster. We apply the method to diffusion tensor imaging (DTI) fibers using a scale space approach for the difference of population means. R code is available in our Rpackage SCBfda.

Summary

We haven't generated a summary for this paper yet.