Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak convergence rates for temporal numerical approximations of stochastic wave equations with multiplicative noise (1901.05535v2)

Published 16 Jan 2019 in math.PR, cs.NA, and math.NA

Abstract: In this work we establish weak convergence rates for temporal discretisations of stochastic wave equations with multiplicative noise, in particular, for the hyperbolic Anderson model. For this class of stochastic partial differential equations the weak convergence rates we obtain are indeed twice the known strong rates. To the best of our knowledge, our findings are the first in the scientific literature which provide essentially sharp weak convergence rates for temporal discretisations of stochastic wave equations with multiplicative noise. Key ideas of our proof are a sophisticated splitting of the error and applications of the recently introduced mild It^{o} formula. We complement our analytical findings by means of numerical simulations in Python for the decay of the weak approximation error for SPDEs for four different test functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Full discretization of semilinear stochastic wave equations driven by multiplicative noise. SIAM J. Numer. Anal., 54(2):1093–1119, 2016.
  2. Regularity properties for solutions of infinite dimensional Kolmogorov equations in Hilbert spaces. Potential Anal., 50(3):347–379, 2019.
  3. Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values. J.Math. Anal. Appl., 495(1):124558, 2021.
  4. On the differentiability of solutions of stochastic evolution equations with respect to their initial values. Nonlinear Anal., 162:128–161, 2017.
  5. Weak error analysis for semilinear stochastic Volterra equations with additive noise. J. Math. Anal. Appl., 437(2):1283–1304, 2016.
  6. Duality in refined Sobolev-Malliavin spaces and weak approximation of SPDE. Stoch. Partial Differ. Equ. Anal. Comput., 4(1):113–149, 2016.
  7. A. Andersson and S. Larsson. Weak convergence for a spatial approximation of the nonlinear stochastic heat equation. Math. Comp., 85(299):1335–1358, 2016.
  8. A. Andersson and F. Lindner. Poisson Malliavin calculus in Hilbert space with an application to SPDEs. arXiv:1703.07259, 2017.
  9. A. Andersson and F. Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete Contin. Dyn. Syst. Ser. B, 24(8):4271–4294, 2019.
  10. A. Alfonsi. On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl., 11(4):355–384, 2005.
  11. C.-E. Bréhier and A. Debussche. Kolmogorov equations and weak order analysis for SPDEs with nonlinear diffusion coefficient. J. Math. Pures Appl., 119:193–254, 2018.
  12. C.-E. Bréhier and L. Goudenège. Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation. BIT Numerical Mathematics, 60(3):543–582, 2020.
  13. Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations. BIT, 60(4):1057–1073, 2020.
  14. C.-E. Bréhier and M. Kopec. Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme. IMA J. Numer. Anal., 37(3):1375–1410, 2017.
  15. C.-E. Bréhier. Strong and weak orders in averaging for SPDEs. Stochastic Process. Appl., 122(7):2553–2593, 2012.
  16. C.-E. Bréhier. Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise. Potential Anal., 40(1):1–40, 2014.
  17. C.-E. Bréhier. Influence of the regularity of the test functions for weak convergence in numerical discretization of SPDEs. Journal of Complexity, 56:101424, 2020.
  18. J. Cui and J. Hong. Analysis of a splitting scheme for damped stochastic nonlinear Schrödinger equation with multiplicative noise. SIAM J. Numer. Anal., 56(4):2045–2069, 2018.
  19. J. Cui and J. Hong. Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal., 57(4):1815–1841, 2019.
  20. Energy-preserving exponential integrable numerical method for stochastic cubic wave equation with additive noise. arXiv:1909.00575, 2019.
  21. Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients. Ann. Appl. Probab., 29(2):653–716, 2019.
  22. On the mild Itô formula in Banach spaces. Discrete Contin. Dyn. Syst. Ser. B, 23(6):2217–2243, 2018.
  23. A trigonometric method for the linear stochastic wave equation. SIAM J. Numer. Anal., 51(1):204–222, 2013.
  24. D. Cohen and L. Quer-Sardanyons. A fully discrete approximation of the one-dimensional stochastic wave equation. IMA J. Numer. Anal., 36(1):400–420, 2016.
  25. Y. Cao and L. Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Commun. Pure Appl. Anal., 6(3):607–617, 2007.
  26. R. C. Dalang. The stochastic wave equation. In A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes in Math., pages 39–71. Springer, Berlin, 2009.
  27. A. de Bouard and A. Debussche. Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation. Appl. Math. Optim., 54(3):369–399, 2006.
  28. A. Debussche. Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comp., 80(273):89–117, 2011.
  29. Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comp., 70(233):121–134, 2001.
  30. A. Debussche and J. Printems. Weak order for the discretization of the stochastic heat equation. Math. Comp., 78(266):845–863, 2009.
  31. A mild Itô formula for SPDEs. Trans. Amer. Math. Soc., 372(6):3755–3807, 2019.
  32. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992.
  33. N. Dunford and J. T. Schwartz. Linear Operators, Part II: Spectral theory, self adjoint operators in Hilbert space. Interscience Publishers, New York-London, 1963.
  34. Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise. BIT, 49(2):343–356, 2009.
  35. E. Hausenblas. Weak approximation for semilinear stochastic evolution equations. In Stochastic analysis and related topics VIII, volume 53 of Progr. Probab., pages 111–128. Birkhäuser, Basel, 2003.
  36. E. Hausenblas. Weak approximation of the stochastic wave equation. J. Comput. Appl. Math., 235(1):33–58, 2010.
  37. M. Hefter and A. Jentzen. On arbitrarily slow convergence rates for strong numerical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes. Finance Stoch., 23(1):139–172, 2019.
  38. Weak convergence rates for numerical approximations of stochastic partial differential equations with nonlinear diffusion coefficients in UMD Banach spaces. arXiv:1612.03209, 2016.
  39. P. Harms and M. Mueller. Weak convergence rates for stochastic evolution equations and applications to nonlinear stochastic wave, HJMM, stochastic Schroedinger and linearized stochastic Korteweg–de Vries equations. Z. Angew. Math. Phys., 70(16):28 pages, 2019.
  40. Weak convergence rates for spatial spectral Galerkin approximations of semilinear stochastic wave equations with multiplicative noise. arXiv:1508.05168, 2015.
  41. Lower bounds for weak approximation errors for spatial spectral Galerkin approximations of stochastic wave equations. In Stochastic partial differential equations and related fields, volume 229 of Springer Proc. Math. Stat., pages 237–248. Springer, Cham, 2018.
  42. Weak convergence rates for spatial spectral Galerkin approximations of semilinear stochastic wave equations with multiplicative noise. Appl. Math. Optim., 84(2):1187–1217, 2021.
  43. A. Jentzen and R. Kurniawan. Weak convergence rates for Euler-type approximations of semilinear stochastic evolution equations with nonlinear diffusion coefficients. Foundations of Computational Mathematics, 21(2):445–536, 2021.
  44. A. Jentzen and M. Röckner. Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise. J. Differential Equations, 252(1):114–136, 2012.
  45. Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise. BIT, 52(1):85–108, 2012.
  46. Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes. BIT, 53(2):497–525, 2013.
  47. Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal., 48(2):408–427, 2010.
  48. Weak convergence of finite element approximations of linear stochastic evolution equations with additive Lévy noise. SIAM/ASA J. Uncertain. Quantif., 3(1):1159–1199, 2015.
  49. M. Kopec. Quelques contributions à l’analyse numérique d’équations stochastiques. PhD thesis, Ecole normale supérieure de Rennes, 2014.
  50. M. Kovács and J. Printems. Weak convergence of a fully discrete approximation of a linear stochastic evolution equation with a positive-type memory term. J. Math. Anal. Appl., 413(2):939–952, 2014.
  51. R. Kruse. Strong and weak approximation of semilinear stochastic evolution equations, volume 2093 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  52. F. Lindgren. On weak and strong convergence of numerical approximations of stochastic partial differential equations. Phd thesis, Chalmers University of Technology, 2012.
  53. P. Lemarié-Rieusset and S. Gala. Multipliers between Sobolev spaces and fractional differentiation. J. Math. Anal. Appl., 322(2):1030–1054, 2006.
  54. F. Lindner and R. L. Schilling. Weak order for the discretization of the stochastic heat equation driven by impulsive noise. Potential Anal., 38(2):345–379, 2013.
  55. T. Müller-Gronbach and K. Ritter. Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math., 7(2):135–181, 2007.
  56. Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise. In Monte Carlo and quasi-Monte Carlo methods 2006, pages 577–589. Springer, Berlin, 2008.
  57. Optimal pointwise approximation of infinite-dimensional Ornstein-Uhlenbeck processes. Stoch. Dyn., 8(3):519–541, 2008.
  58. R. Meise and D. Vogt. Introduction to functional analysis. Clarendon Press, Oxford, 1997.
  59. L. Quer-Sardanyons and M. Sanz-Solé. Space semi-discretisations for a stochastic wave equation. Potential Anal., 24(4):303–332, 2006.
  60. T. Shardlow. Weak convergence of a numerical method for a stochastic heat equation. BIT, 43(1):179–193, 2003.
  61. L. E. Thomas. Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics. J. Math. Phys., 53(9):095208, 10, 2012.
  62. H. Triebel. Interpolation theory, function spaces, differential operators, volume 18 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-New York, 1978.
  63. J. B. Walsh. On numerical solutions of the stochastic wave equation. Illinois J. Math., 50(1-4):991–1018, 2006.
  64. X. Wang. An exponential integrator scheme for time discretization of nonlinear stochastic wave equation. J. Sci. Comput., 64(1):234–263, 2015.
  65. X. Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete Contin. Dyn. Syst., 36(1):481–497, 2016.
  66. X. Wang and S. Gan. Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential equations with additive noise. J. Math. Anal. Appl., 398(1):151–169, 2013.
  67. Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise. SIAM J. Sci. Comput., 36(6):A2611–A2632, 2014.
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com