Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Importance Sampling for Efficient Symbol Error Rate Estimation (1901.04918v1)

Published 13 Jan 2019 in cs.IT and math.IT

Abstract: Digital constellations formed by hexagonal or other non-square two-dimensional lattices are often used in advanced digital communication systems. The integrals required to evaluate the symbol error rate (SER) of these constellations in the presence of Gaussian noise are in general difficult to compute in closed-form, and therefore Monte Carlo simulation is typically used to estimate the SER. However, naive Monte Carlo simulation can be very inefficient and requires very long simulation runs, especially at high signal-to-noise ratios. In this letter, we adapt a recently proposed multiple importance sampling (MIS) technique, called ALOE (for `At Least One rare Event'), to this problem. Conditioned to a transmitted symbol, an error (or rare event) occurs when the observation falls in a union of half-spaces or, equivalently, outside a given polytope. The proposal distribution for ALOE samples the system conditionally on an error taking place, which makes it more efficient than other importance sampling techniques ALOE provides unbiased SER estimates with simulation times orders of magnitude shorter than conventional Monte Carlo.

Citations (15)

Summary

We haven't generated a summary for this paper yet.