Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Colorectal Cancer Survivability Prediction with Machine Learning Methods (1901.03896v1)

Published 12 Jan 2019 in cs.LG and stat.ML

Abstract: In this work, we investigate the importance of ethnicity in colorectal cancer survivability prediction using machine learning techniques and the SEER cancer incidence database. We compare model performances for 2-year survivability prediction and feature importance rankings between Hispanic, White, and mixed patient populations. Our models consistently perform better on single-ethnicity populations and provide different feature importance rankings when trained in different populations. Additionally, we show our models achieve higher Area Under Curve (AUC) score than the best reported in the literature. We also apply imbalanced classification techniques to improve classification performance when the number of patients who have survived from colorectal cancer is much larger than who have not. These results provide evidence in favor for increased consideration of patient ethnicity in cancer survivability prediction, and for more personalized medicine in general.

Citations (3)

Summary

We haven't generated a summary for this paper yet.