Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What comes next? Extractive summarization by next-sentence prediction (1901.03859v1)

Published 12 Jan 2019 in cs.CL

Abstract: Existing approaches to automatic summarization assume that a length limit for the summary is given, and view content selection as an optimization problem to maximize informativeness and minimize redundancy within this budget. This framework ignores the fact that human-written summaries have rich internal structure which can be exploited to train a summarization system. We present NEXTSUM, a novel approach to summarization based on a model that predicts the next sentence to include in the summary using not only the source article, but also the summary produced so far. We show that such a model successfully captures summary-specific discourse moves, and leads to better content selection performance, in addition to automatically predicting how long the target summary should be. We perform experiments on the New York Times Annotated Corpus of summaries, where NEXTSUM outperforms lead and content-model summarization baselines by significant margins. We also show that the lengths of summaries produced by our system correlates with the lengths of the human-written gold standards.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jingyun Liu (2 papers)
  2. Jackie C. K. Cheung (11 papers)
  3. Annie Louis (13 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.