Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable Importance Clouds: A Way to Explore Variable Importance for the Set of Good Models (1901.03209v2)

Published 10 Jan 2019 in stat.ML and cs.LG

Abstract: Variable importance is central to scientific studies, including the social sciences and causal inference, healthcare, and other domains. However, current notions of variable importance are often tied to a specific predictive model. This is problematic: what if there were multiple well-performing predictive models, and a specific variable is important to some of them and not to others? In that case, we may not be able to tell from a single well-performing model whether a variable is always important in predicting the outcome. Rather than depending on variable importance for a single predictive model, we would like to explore variable importance for all approximately-equally-accurate predictive models. This work introduces the concept of a variable importance cloud, which maps every variable to its importance for every good predictive model. We show properties of the variable importance cloud and draw connections to other areas of statistics. We introduce variable importance diagrams as a projection of the variable importance cloud into two dimensions for visualization purposes. Experiments with criminal justice, marketing data, and image classification tasks illustrate how variables can change dramatically in importance for approximately-equally-accurate predictive models

Citations (22)

Summary

We haven't generated a summary for this paper yet.