Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-stream CNN based Video Semantic Segmentation for Automated Driving (1901.02511v1)

Published 8 Jan 2019 in cs.CV, cs.LG, and stat.ML

Abstract: Majority of semantic segmentation algorithms operate on a single frame even in the case of videos. In this work, the goal is to exploit temporal information within the algorithm model for leveraging motion cues and temporal consistency. We propose two simple high-level architectures based on Recurrent FCN (RFCN) and Multi-Stream FCN (MSFCN) networks. In case of RFCN, a recurrent network namely LSTM is inserted between the encoder and decoder. MSFCN combines the encoders of different frames into a fused encoder via 1x1 channel-wise convolution. We use a ResNet50 network as the baseline encoder and construct three networks namely MSFCN of order 2 & 3 and RFCN of order 2. MSFCN-3 produces the best results with an accuracy improvement of 9% and 15% for Highway and New York-like city scenarios in the SYNTHIA-CVPR'16 dataset using mean IoU metric. MSFCN-3 also produced 11% and 6% for SegTrack V2 and DAVIS datasets over the baseline FCN network. We also designed an efficient version of MSFCN-2 and RFCN-2 using weight sharing among the two encoders. The efficient MSFCN-2 provided an improvement of 11% and 5% for KITTI and SYNTHIA with negligible increase in computational complexity compared to the baseline version.

Citations (6)

Summary

We haven't generated a summary for this paper yet.