Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using ZDDs in the Mapping of Quantum Circuits (1901.02406v3)

Published 8 Jan 2019 in quant-ph and cs.ET

Abstract: A critical step in quantum compilation is the transformation of a technology-independent quantum circuit into a technology-dependent form for a targeted device. In addition to mapping quantum gates into the supported gate set, it is necessary to map pseudo qubits in the technology-independent circuit into physical qubits of the technology-dependent circuit such that coupling constraints among qubits acting in multiple-qubit gates are satisfied. It is usually not possible to find such a mapping without adding SWAP gates into the circuit. To cope with the technical limitations of NISQ-era quantum devices, it is advantageous to find a mapping that requires as few additional gates as possible. The large search space of possible mappings makes this task a difficult combinatorial optimization problem. In this work, we demonstrate how zero-suppressed decision diagrams (ZDDs) can be used for typical implementation tasks in quantum mapping algorithms. We show how to maximally partition a quantum circuit into blocks of adjacent gates, and if adjacent gates within a circuit do not share common mapping permutations, we attempt to combine them using parallelized SWAP operations represented in a ZDD. Boundaries for the partitions are formed where adjacent gates are unable to be combined. Within each partition block, ZDDs represent all possible mappings of pseudo qubits to physical qubits.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Kaitlin Smith (2 papers)
  2. Mathias Soeken (29 papers)
  3. Bruno Schmitt (4 papers)
  4. Giovanni De Micheli (25 papers)
  5. Mitchell Thornton (3 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.