Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long Short-Term Memory Spatial Transformer Network (1901.02273v1)

Published 8 Jan 2019 in eess.IV

Abstract: Spatial transformer network has been used in a layered form in conjunction with a convolutional network to enable the model to transform data spatially. In this paper, we propose a combined spatial transformer network (STN) and a Long Short-Term Memory network (LSTM) to classify digits in sequences formed by MINST elements. This LSTM-STN model has a top-down attention mechanism profit from LSTM layer, so that the STN layer can perform short-term independent elements for the statement in the process of spatial transformation, thus avoiding the distortion that may be caused when the entire sequence is spatially transformed. It also avoids the influence of this distortion on the subsequent classification process using convolutional neural networks and achieves a single digit error of 1.6\% compared with 2.2\% of Convolutional Neural Network with STN layer.

Citations (1)

Summary

We haven't generated a summary for this paper yet.