Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 49 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Data Masking with Privacy Guarantees (1901.02185v1)

Published 8 Jan 2019 in cs.LG, cs.CR, and stat.ML

Abstract: We study the problem of data release with privacy, where data is made available with privacy guarantees while keeping the usability of the data as high as possible --- this is important in health-care and other domains with sensitive data. In particular, we propose a method of masking the private data with privacy guarantee while ensuring that a classifier trained on the masked data is similar to the classifier trained on the original data, to maintain usability. We analyze the theoretical risks of the proposed method and the traditional input perturbation method. Results show that the proposed method achieves lower risk compared to the input perturbation, especially when the number of training samples gets large. We illustrate the effectiveness of the proposed method of data masking for privacy-sensitive learning on $12$ benchmark datasets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.