Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Ten ways to fool the masses with machine learning (1901.01686v1)

Published 7 Jan 2019 in cs.LG and stat.ML

Abstract: If you want to tell people the truth, make them laugh, otherwise they'll kill you. (source unclear) Machine learning and deep learning are the technologies of the day for developing intelligent automatic systems. However, a key hurdle for progress in the field is the literature itself: we often encounter papers that report results that are difficult to reconstruct or reproduce, results that mis-represent the performance of the system, or contain other biases that limit their validity. In this semi-humorous article, we discuss issues that arise in running and reporting results of machine learning experiments. The purpose of the article is to provide a list of watch out points for researchers to be aware of when developing machine learning models or writing and reviewing machine learning papers.

Citations (5)

Summary

We haven't generated a summary for this paper yet.