Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Leibniz Algebras: Structure Theorem and Induced Lie 2-Algebra (1901.01014v1)

Published 4 Jan 2019 in math.AT, hep-th, math-ph, math.MP, and math.QA

Abstract: An enhanced Leibniz algebra is an algebraic struture that arises in the context of particular higher gauge theories describing self-interacting gerbes. It consists of a Leibniz algebra $(\mathbb{V},[ \cdot, \cdot ])$, a bilinear form on $\mathbb{V}$ with values in another vector space $\mathbb{W}$, and a map $t \colon \mathbb{W} \to \mathbb{V}$, satisfying altogether four compatibility relations. Our structure theorem asserts that an enhanced Leibniz algebra is uniquely determined by the underlying Leibniz algebra $(\mathbb{V},[ \cdot, \cdot ])$, an appropriate abelian ideal ${\mathfrak i}$ inside it, as well as a cohomology 2-class $[\Delta]$ which only effects the $\mathbb{W}$-valued product. Positive quadratic enhanced Leibniz algebras, as needed for the definition of a Yang-Mills type action functional, turn out to be rather restrictive on the underlying Leibniz algebra $(\mathbb{V},[ \cdot, \dot ])$: $\mathbb{V}$ has to be the hemisemidirect product of a positive quadratic Lie algebra ${\mathfrak g}$ with a ${\mathfrak g}$-module ${\mathfrak i}$, $\mathbb{V} \cong {\mathfrak g}\ltimes{\mathfrak i}$, with ${\mathfrak i}$ the above-mentioned ideal in this case. The second main result of this article is the construction of a functor from the category of such enhanced Leibniz algebras to the category of (semi-strict) Lie 2-algebras or, equivalentely, of two-term $L_\infty$-algebras.

Summary

We haven't generated a summary for this paper yet.