Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Improving solutions by embedding larger subproblems in a D-Wave quantum annealer (1901.00924v1)

Published 2 Jan 2019 in quant-ph and physics.data-an

Abstract: Quantum annealing is a heuristic algorithm that solves combinatorial optimization problems, and D-Wave Systems Inc. has developed hardware implementation of this algorithm. However, in general, we cannot embed all the logical variables of a large-scale problem, since the number of available qubits is limited. In order to handle a large problem, qbsolv has been proposed as a method for partitioning the original large problem into subproblems that are embeddable in the D-Wave quantum annealer, and it then iteratively optimizes the subproblems using the quantum annealer. Multiple logical variables in the subproblem are simultaneously updated in this iterative solver, and using this approach we expect to obtain better solutions than can be obtained by conventional local search algorithms. Although embedding of large subproblems is essential for improving the accuracy of solutions in this scheme, the size of the subproblems are small in qbsolv since the subproblems are basically embedded by using an embedding of a complete graph even for sparse problem graphs. This means that the resource of the D-Wave quantum annealer is not exploited efficiently. In this paper, we propose a fast algorithm for embedding larger subproblems, and we show that better solutions are obtained efficiently by embedding larger subproblems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube