Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Evolutionary Methods for Game Agent Optimisation: Model-Based is Best (1901.00723v1)

Published 3 Jan 2019 in cs.AI

Abstract: This paper introduces a simple and fast variant of Planet Wars as a test-bed for statistical planning based Game AI agents, and for noisy hyper-parameter optimisation. Planet Wars is a real-time strategy game with simple rules but complex game-play. The variant introduced in this paper is designed for speed to enable efficient experimentation, and also for a fixed action space to enable practical inter-operability with General Video Game AI agents. If we treat the game as a win-loss game (which is standard), then this leads to challenging noisy optimisation problems both in tuning agents to play the game, and in tuning game parameters. Here we focus on the problem of tuning an agent, and report results using the recently developed N-Tuple Bandit Evolutionary Algorithm and a number of other optimisers, including Sequential Model-based Algorithm Configuration (SMAC). Results indicate that the N-Tuple Bandit Evolutionary offers competitive performance as well as insight into the effects of combinations of parameter choices.

Citations (24)

Summary

We haven't generated a summary for this paper yet.