Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Bounds for Mutual Covering (1901.00179v2)

Published 1 Jan 2019 in cs.IT and math.IT

Abstract: A fundamental tool in network information theory is the covering lemma, which lower bounds the probability that there exists a pair of random variables, among a give number of independently generated candidates, falling within a given set. We use a weighted sum trick and Talagrand's concentration inequality to prove new mutual covering bounds. We identify two interesting applications: 1) When the probability of the set under the given joint distribution is bounded away from 0 and 1, the covering probability converges to 1 \emph{doubly} exponentially fast in the blocklength, which implies that the covering lemma does not induce penalties on the error exponents in the applications to coding theorems. 2) Using Hall's marriage lemma, we show that the maximum difference between the probability of the set under the joint distribution and the covering probability equals half the minimum total variation distance between the joint distribution and any distribution that can be simulated by selecting a pair from the candidates. Thus we use the mutual covering bound to derive the exact error exponent in the joint distribution simulation problem. In both applications, the determination of the exact exponential (or doubly exponential) behavior relies crucially on the sharp concentration inequality used in the proof of the mutual covering lemma.

Citations (4)

Summary

We haven't generated a summary for this paper yet.