Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Quantile Low-Rank Matrix Factorization (1901.00140v3)

Published 1 Jan 2019 in stat.ML and cs.LG

Abstract: Low-rank matrix factorization (LRMF) has received much popularity owing to its successful applications in both computer vision and data mining. By assuming noise to come from a Gaussian, Laplace or mixture of Gaussian distributions, significant efforts have been made on optimizing the (weighted) $L_1$ or $L_2$-norm loss between an observed matrix and its bilinear factorization. However, the type of noise distribution is generally unknown in real applications and inappropriate assumptions will inevitably deteriorate the behavior of LRMF. On the other hand, real data are often corrupted by skew rather than symmetric noise. To tackle this problem, this paper presents a novel LRMF model called AQ-LRMF by modeling noise with a mixture of asymmetric Laplace distributions. An efficient algorithm based on the expectation-maximization (EM) algorithm is also offered to estimate the parameters involved in AQ-LRMF. The AQ-LRMF model possesses the advantage that it can approximate noise well no matter whether the real noise is symmetric or skew. The core idea of AQ-LRMF lies in solving a weighted $L_1$ problem with weights being learned from data. The experiments conducted on synthetic and real datasets show that AQ-LRMF outperforms several state-of-the-art techniques. Furthermore, AQ-LRMF also has the superiority over the other algorithms in terms of capturing local structural information contained in real images.

Citations (12)

Summary

We haven't generated a summary for this paper yet.