Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal Khovanov homology of Turaev genus one links (1812.11387v2)

Published 29 Dec 2018 in math.GT

Abstract: The Turaev genus of a link can be thought of as a way of measuring how non-alternating a link is. A link is Turaev genus zero if and only if it is alternating, and in this viewpoint, links with large Turaev genus are very non-alternating. In this paper, we study Turaev genus one links, a class of links which includes almost alternating links. We prove that the Khovanov homology of a Turaev genus one link is isomorphic to $\mathbb{Z}$ in at least one of its extremal quantum gradings. As an application, we compute or nearly compute the maximal Thurston Bennequin number of a Turaev genus one link.

Summary

We haven't generated a summary for this paper yet.