Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

StarAlgo: A Squad Movement Planning Library for StarCraft using Monte Carlo Tree Search and Negamax (1812.11371v1)

Published 29 Dec 2018 in cs.AI

Abstract: Real-Time Strategy (RTS) games have recently become a popular testbed for artificial intelligence research. They represent a complex adversarial domain providing a number of interesting AI challenges. There exists a wide variety of research-supporting software tools, libraries and frameworks for one RTS game in particular -- StarCraft: Brood War. These tools are designed to address various specific sub-problems, such as resource allocation or opponent modelling so that researchers can focus exclusively on the tasks relevant to them. We present one such tool -- a library called StarAlgo that produces plans for the coordinated movement of squads (groups of combat units) within the game world. StarAlgo library can solve the squad movement planning problem using one of two algorithms: Monte Carlo Tree Search Considering Durations (MCTSCD) and a slightly modified version of Negamax. We evaluate both the algorithms, compare them, and demonstrate their usage. The library is implemented as a static C++ library that can be easily plugged into most StarCraft AI bots.

Summary

We haven't generated a summary for this paper yet.