Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning enables polymer cloud-point engineering via inverse design (1812.11212v1)

Published 21 Nov 2018 in cond-mat.soft, cond-mat.mtrl-sci, cs.LG, physics.comp-ph, and stat.ML

Abstract: Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. We demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4 {\deg}C root mean squared error (RMSE) in a temperature range of 24-90 {\deg}C, employing gradient boosting with decision trees. The RMSE is >3x better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80 {\deg}C. Our approach challenges the status quo in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.

Citations (62)

Summary

We haven't generated a summary for this paper yet.