Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facetize: An Interactive Tool for Cleaning and Transforming Datasets for Facilitating Exploratory Search (1812.10734v1)

Published 27 Dec 2018 in cs.DB

Abstract: There is a plethora of datasets in various formats which are usually stored in files, hosted in catalogs, or accessed through SPARQL endpoints. In most cases, these datasets cannot be straightforwardly explored by end users, for satisfying recall-oriented information needs. To fill this gap, in this paper we present the design and implementation of Facetize, an editor that allows users to transform (in an interactive manner) datasets, either static (i.e. stored in files), or dynamic (i.e. being the results of SPARQL queries), to datasets that can be directly explored effectively by themselves or other users. The latter (exploration) is achieved through the familiar interaction paradigm of Faceted Search (and Preference-enriched Faceted Search). Specifically in this paper we describe the requirements, we introduce the required set of transformations, and then we detail the functionality and the implementation of the editor Facetize that realizes these transformations. The supported operations cover a wide range of tasks (selection, visibility, deletions, edits, definition of hierarchies, intervals, derived attributes, and others) and Facetize enables the user to carry them out in a user-friendly and guided manner, without presupposing any technical background (regarding data representation or query languages). Finally we present the results of an evaluation with users. To the best of your knowledge, this is the first editor for this kind of tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.