Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridge Damage Detection using a Single-Stage Detector and Field Inspection Images (1812.10590v2)

Published 19 Dec 2018 in cs.CY

Abstract: Detecting concrete surface damages is a vital task for maintaining the structural health and reliability of highway bridges. Currently, most of these tasks are conducted manually which could be cumbersome and time-consuming. Recent rapid advancement in convolution neural network has enabled the development of deep learning-based visual inspection techniques for detecting multiple structural damages. However, most deep learning-based techniques are built on two-stage, proposal-driven detectors and using less complex image data, which is not promising to promote practical applications and integration within intelligent autonomous inspection systems. In this study, a faster, simpler single-stage detector is proposed based on YOLOv3 for detecting multiple concrete damages of highway bridges. To realize this, a bridge damage dataset consisting of field inspection images is prepared. These images have large variations in damage appearance and monitoring scene and are labeled with four types of concrete damages: crack, pop-out, spalling and exposed rebar. The original YOLOv3 is further improved by introducing a novel transfer learning method, Batch Renormalization and Focal Loss. The improved YOLOv3 is evaluated in terms of average precision and speed. The results show that the improved YOLOv3 has a detection accuracy of up to 80%. Its performance is about 13% better than the original YOLOv3.

Citations (27)

Summary

We haven't generated a summary for this paper yet.