Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal deep learning for short-term stock volatility prediction (1812.10479v1)

Published 25 Dec 2018 in q-fin.ST, cs.CL, cs.LG, q-fin.RM, and stat.ML

Abstract: Stock market volatility forecasting is a task relevant to assessing market risk. We investigate the interaction between news and prices for the one-day-ahead volatility prediction using state-of-the-art deep learning approaches. The proposed models are trained either end-to-end or using sentence encoders transfered from other tasks. We evaluate a broad range of stock market sectors, namely Consumer Staples, Energy, Utilities, Heathcare, and Financials. Our experimental results show that adding news improves the volatility forecasting as compared to the mainstream models that rely only on price data. In particular, our model outperforms the widely-recognized GARCH(1,1) model for all sectors in terms of coefficient of determination $R2$, $MSE$ and $MAE$, achieving the best performance when training from both news and price data.

Citations (23)

Summary

We haven't generated a summary for this paper yet.