Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review on The Use of Deep Learning in Android Malware Detection (1812.10360v1)

Published 26 Dec 2018 in cs.CR, cs.LG, and stat.ML

Abstract: Android is the predominant mobile operating system for the past few years. The prevalence of devices that can be powered by Android magnetized not merely application developers but also malware developers with criminal intention to design and spread malicious applications that can affect the normal work of Android phones and tablets, steal personal information and credential data, or even worse lock the phone and ask for ransom. Researchers persistently devise countermeasures strategies to fight back malware. One of these strategies applied in the past five years is the use of deep learning methods in Android malware detection. This necessitates a review to inspect the accomplished work in order to know where the endeavors have been established, identify unresolved problems, and motivate future research directions. In this work, an extensive survey of static analysis, dynamic analysis, and hybrid analysis that utilized deep learning methods are reviewed with an elaborated discussion on their key concepts, contributions, and limitations.

Citations (52)

Summary

We haven't generated a summary for this paper yet.