Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Whole Slide Image Grading Benchmark and Tissue Classification for Cervical Cancer Precursor Lesions with Inter-Observer Variability (1812.10256v1)

Published 26 Dec 2018 in cs.CV

Abstract: The cervical cancer developing from the precancerous lesions caused by the Human Papilloma Virus (HPV) has been one of the preventable cancers with the help of periodic screening. There are two types of grading conventions widely accepted among pathologists. On the other hand, inter-observer variability is an important issue for final diagnosis. In this paper, a whole-slide image grading benchmark for cervical cancer precursor lesions is introduced. The papillae of the cervical epithelium and overlapping cell problems are handled and a tissue classification method with a novel morphological feature exploiting the relative orientation between the BM and the major axis of all nuclei is developed and its performance is evaluated. Besides, the inter-observer variability is also revealed by a thorough comparison among pathologists' decisions, as well as, the final diagnosis.

Citations (14)

Summary

We haven't generated a summary for this paper yet.