Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Market Making using Multi-Agent Reinforcement Learning (1812.10252v1)

Published 26 Dec 2018 in q-fin.TR, cs.LG, and stat.ML

Abstract: In this paper, reinforcement learning is applied to the problem of optimizing market making. A multi-agent reinforcement learning framework is used to optimally place limit orders that lead to successful trades. The framework consists of two agents. The macro-agent optimizes on making the decision to buy, sell, or hold an asset. The micro-agent optimizes on placing limit orders within the limit order book. For the context of this paper, the proposed framework is applied and studied on the Bitcoin cryptocurrency market. The goal of this paper is to show that reinforcement learning is a viable strategy that can be applied to complex problems (with complex environments) such as market making.

Citations (29)

Summary

We haven't generated a summary for this paper yet.