Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twisted de Rham Complex on Line and Singular Vectors in $\hat{{\mathfrak{sl}_2}}$ Verma Modules (1812.09791v3)

Published 23 Dec 2018 in math.AG, math-ph, math.MP, and math.QA

Abstract: We consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of $\mathfrak{sl}_2$-valued algebraic functions on the same complement, with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra $\hat{{\mathfrak{sl}_2}}$. In [Schechtman V., Varchenko A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the first complex to the second was suggested and it was indicated that under this monomorphism the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the relations between the cohomology classes of the de Rham complex. In this paper we prove these results.

Summary

We haven't generated a summary for this paper yet.