Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partitioned Data Security on Outsourced Sensitive and Non-sensitive Data (1812.09233v1)

Published 20 Dec 2018 in cs.DB, cs.CR, cs.DC, and cs.IR

Abstract: Despite extensive research on cryptography, secure and efficient query processing over outsourced data remains an open challenge. This paper continues along the emerging trend in secure data processing that recognizes that the entire dataset may not be sensitive, and hence, non-sensitivity of data can be exploited to overcome limitations of existing encryption-based approaches. We propose a new secure approach, entitled query binning (QB) that allows non-sensitive parts of the data to be outsourced in clear-text while guaranteeing that no information is leaked by the joint processing of non-sensitive data (in clear-text) and sensitive data (in encrypted form). QB maps a query to a set of queries over the sensitive and non-sensitive data in a way that no leakage will occur due to the joint processing over sensitive and non-sensitive data. Interestingly, in addition to improve performance, we show that QB actually strengthens the security of the underlying cryptographic technique by preventing size, frequency-count, and workload-skew attacks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.