Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-task Neural Approach for Emotion Attribution, Classification and Summarization (1812.09041v2)

Published 21 Dec 2018 in cs.LG, cs.CV, and stat.ML

Abstract: Emotional content is a crucial ingredient in user-generated videos. However, the sparsity of emotional expressions in the videos poses an obstacle to visual emotion analysis. In this paper, we propose a new neural approach, Bi-stream Emotion Attribution-Classification Network (BEAC-Net), to solve three related emotion analysis tasks: emotion recognition, emotion attribution, and emotion-oriented summarization, in a single integrated framework. BEAC-Net has two major constituents, an attribution network and a classification network. The attribution network extracts the main emotional segment that classification should focus on in order to mitigate the sparsity issue. The classification network utilizes both the extracted segment and the original video in a bi-stream architecture. We contribute a new dataset for the emotion attribution task with human-annotated ground-truth labels for emotion segments. Experiments on two video datasets demonstrate superior performance of the proposed framework and the complementary nature of the dual classification streams.

Citations (29)

Summary

We haven't generated a summary for this paper yet.