Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multinomial Goodness-of-Fit Based on U-Statistics: High-Dimensional Asymptotic and Minimax Optimality (1812.08924v1)

Published 21 Dec 2018 in math.ST, stat.ME, and stat.TH

Abstract: We consider multinomial goodness-of-fit tests in the high-dimensional regime where the number of bins increases with the sample size. In this regime, Pearson's chi-squared test can suffer from low power due to the substantial bias as well as high variance of its statistic. To resolve these issues, we introduce a family of U-statistic for multinomial goodness-of-fit and study their asymptotic behaviors in high-dimensions. Specifically, we establish conditions under which the considered U-statistic is asymptotically Poisson or Gaussian, and investigate its power function under each asymptotic regime. Furthermore, we introduce a class of weights for the U-statistic that results in minimax rate optimal tests.

Summary

We haven't generated a summary for this paper yet.