Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Limitations Of Richardson Extrapolation For Kernel Density Estimation (1812.08619v1)

Published 20 Dec 2018 in math.PR

Abstract: This paper develops the process of using Richardson Extrapolation to improve the Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) estimate of a probability density function for a distribution of data in $R_d$ given a set of data from the distribution. The method of Richardson Extrapolation is explained, showing how to fix conditioning issues that arise with higher-order extrapolations. Then, it is shown why higher-order estimators do not always provide the best estimate, and it is discussed how to choose the optimal order of the estimate. It is shown that given n one-dimensional data points, it is possible to estimate the probability density function with a mean squared error value on the order of only $n{-1}\sqrt{\ln(n)}$. Finally, this paper introduces a possible direction of future research that could further minimize the mean squared error.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube