Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Matching (1812.08615v2)

Published 20 Dec 2018 in cs.DS

Abstract: A link stream is a sequence of pairs of the form $(t,{u,v})$, where $t\in\mathbb N$ represents a time instant and $u\neq v$. Given an integer $\gamma$, the $\gamma$-edge between vertices $u$ and $v$, starting at time $t$, is the set of temporally consecutive edges defined by ${(t',{u,v}) | t' \in [t,t+\gamma-1]}$. We introduce the notion of temporal matching of a link stream to be an independent $\gamma$-edge set belonging to the link stream. We show that the problem of computing a temporal matching of maximum size is NP-hard as soon as $\gamma>1$. We depict a kernelization algorithm parameterized by the solution size for the problem. As a byproduct we also give a $2$-approximation algorithm. Both our $2$-approximation and kernelization algorithms are implemented and confronted to link streams collected from real world graph data. We observe that finding temporal matchings is a sensitive question when mining our data from such a perspective as: managing peer-working when any pair of peers $X$ and $Y$ are to collaborate over a period of one month, at an average rate of at least two email exchanges every week. We furthermore design a link stream generating process by mimicking the behaviour of a random moving group of particles under natural simulation, and confront our algorithms to these generated instances of link streams. All the implementations are open source.

Citations (18)

Summary

We haven't generated a summary for this paper yet.