Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the gap between deterministic and probabilistic joint spectral radii for discrete-time linear systems (1812.08399v4)

Published 20 Dec 2018 in math.OC, math.DS, and math.PR

Abstract: Given a discrete-time linear switched system $\Sigma(\mathcal A)$ associated with a finite set $\mathcal A$ of matrices, we consider the measures of its asymptotic behavior given by, on the one hand, its deterministic joint spectral radius $\rho_{\mathrm d}(\mathcal A)$ and, on the other hand, its probabilistic joint spectral radii $\rho_{\mathrm p}(\nu,P,\mathcal A)$ for Markov random switching signals with transition matrix $P$ and a corresponding invariant probability $\nu$. Note that $\rho_{\mathrm d}(\mathcal A)$ is larger than or equal to $\rho_{\mathrm p}(\nu,P,\mathcal A)$ for every pair $(\nu, P)$. In this paper, we investigate the cases of equality of $\rho_{\mathrm d}(\mathcal A)$ with either a single $\rho_{\mathrm p}(\nu,P,\mathcal A)$ or with the supremum of $\rho_{\mathrm p}(\nu,P,\mathcal A)$ over $(\nu,P)$ and we aim at characterizing the sets $\mathcal A$ for which such equalities may occur.

Summary

We haven't generated a summary for this paper yet.