Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Attention GAN for Interactive Image Editing (1812.08352v4)

Published 20 Dec 2018 in cs.CV, cs.AI, and stat.ML

Abstract: Most existing text-to-image synthesis tasks are static single-turn generation, based on pre-defined textual descriptions of images. To explore more practical and interactive real-life applications, we introduce a new task - Interactive Image Editing, where users can guide an agent to edit images via multi-turn textual commands on-the-fly. In each session, the agent takes a natural language description from the user as the input and modifies the image generated in the previous turn to a new design, following the user description. The main challenges in this sequential and interactive image generation task are two-fold: 1) contextual consistency between a generated image and the provided textual description; 2) step-by-step region-level modification to maintain visual consistency across the generated image sequence in each session. To address these challenges, we propose a novel Sequential Attention Generative Adversarial Net-work (SeqAttnGAN), which applies a neural state tracker to encode the previous image and the textual description in each turn of the sequence, and uses a GAN framework to generate a modified version of the image that is consistent with the preceding images and coherent with the description. To achieve better region-specific refinement, we also introduce a sequential attention mechanism into the model. To benchmark on the new task, we introduce two new datasets, Zap-Seq and DeepFashion-Seq, which contain multi-turn sessions with image-description sequences in the fashion domain. Experiments on both datasets show that the proposed SeqAttnGANmodel outperforms state-of-the-art approaches on the interactive image editing task across all evaluation metrics including visual quality, image sequence coherence, and text-image consistency.

Citations (91)

Summary

We haven't generated a summary for this paper yet.