Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards an Evolvable Cancer Treatment Simulator (1812.08252v3)

Published 19 Dec 2018 in cs.NE, cs.AI, cs.CE, and cs.MA

Abstract: The use of high-fidelity computational simulations promises to enable high-throughput hypothesis testing and optimisation of cancer therapies. However, increasing realism comes at the cost of increasing computational requirements. This article explores the use of surrogate-assisted evolutionary algorithms to optimise the targeted delivery of a therapeutic compound to cancerous tumour cells with the multicellular simulator, PhysiCell. The use of both Gaussian process models and multi-layer perceptron neural network surrogate models are investigated. We find that evolutionary algorithms are able to effectively explore the parameter space of biophysical properties within the agent-based simulations, minimising the resulting number of cancerous cells after a period of simulated treatment. Both model-assisted algorithms are found to outperform a standard evolutionary algorithm, demonstrating their ability to perform a more effective search within the very small evaluation budget. This represents the first use of efficient evolutionary algorithms within a high-throughput multicellular computing approach to find therapeutic design optima that maximise tumour regression.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Richard J. Preen (16 papers)
  2. Larry Bull (61 papers)
  3. Andrew Adamatzky (212 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.