Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parity flow as ${\mathbb Z}_2$-valued spectral flow (1812.07780v2)

Published 19 Dec 2018 in math-ph, math.FA, and math.MP

Abstract: This note is about the topology of the path space of linear Fredholm operators on a real Hilbert space. Fitzpatrick and Pejsachowicz introduced the parity of such a path, based on the Leray-Schauder degree of a path of parametrices. Here an alternative analytic approach is presented which reduces the parity to the ${\mathbb Z}_2$-valued spectral flow of an associated path of chiral skew-adjoints. Furthermore the related notion of ${\mathbb Z}_2$-index of a Fredholm pair of chiral complex structures is introduced and connected to the parity of a suitable path. Several non-trivial examples are provided. One of them concerns topological insulators, another an application to the bifurcation of a non-linear partial differential equation.

Summary

We haven't generated a summary for this paper yet.