Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised Domain Enablement Attention for Personalized Domain Classification (1812.07546v1)

Published 18 Dec 2018 in cs.CL

Abstract: In large-scale domain classification for natural language understanding, leveraging each user's domain enablement information, which refers to the preferred or authenticated domains by the user, with attention mechanism has been shown to improve the overall domain classification performance. In this paper, we propose a supervised enablement attention mechanism, which utilizes sigmoid activation for the attention weighting so that the attention can be computed with more expressive power without the weight sum constraint of softmax attention. The attention weights are explicitly encouraged to be similar to the corresponding elements of the ground-truth's one-hot vector by supervised attention, and the attention information of the other enabled domains is leveraged through self-distillation. By evaluating on the actual utterances from a large-scale IPDA, we show that our approach significantly improves domain classification performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.