Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Approach in Automatic Iceberg - Ship Detection with SAR Remote Sensing Data (1812.07367v1)

Published 9 Dec 2018 in cs.LG and stat.ML

Abstract: Deep Learning is gaining traction with geophysics community to understand subsurface structures, such as fault detection or salt body in seismic data. This study describes using deep learning method for iceberg or ship recognition with synthetic aperture radar (SAR) data. Drifting icebergs pose a potential threat to activities offshore around the Arctic, including for both ship navigation and oil rigs. Advancement of satellite imagery using weather-independent cross-polarized radar has enabled us to monitor and delineate icebergs and ships, however a human component is needed to classify the images. Here we present Transfer Learning, a convolutional neural network (CNN) designed to work with a limited training data and features, while demonstrating its effectiveness in this problem. Key aspect of the approach is data augmentation and stacking of multiple outputs, resulted in a significant boost in accuracy (logarithmic score of 0.1463). This algorithm has been tested through participation at the Statoil/C-Core Kaggle competition.

Citations (4)

Summary

We haven't generated a summary for this paper yet.