2000 character limit reached
The Kobayashi pseudometric for the Fock-Bargmann-Hartogs domain and its application (1812.07338v1)
Published 18 Dec 2018 in math.CV and math.DG
Abstract: The Fock-Bargmann-Hartogs domain $D_{n,m}$ in $\mathbb{C}{n+m}$ is defined by the inequality $|w|2<e{-|z|2},$ where $(z,w)\in \mathbb{C}n\times \mathbb{C}m$, which is an unbounded non-hyperbolic domain in $\mathbb{C}{n+m}$. This paper mainly consists of three parts. Firstly, we give the explicit expression of geodesics of $D_{n,1}$ in the sense of Kobayashi pseudometric; Secondly, using the formula of geodesics, we calculate explicitly the Kobayashi pseudometric on $D_{1,1}$; Lastly, we establish the Schwarz lemma at the boundary for holomorphic mappings between the nonequidimensional Fock-Bargmann-Hartogs domains by using the formula for the Kobayashi pseudometric on $D_{1,1}$.