Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Robustness of the Sobol' indices to marginal distribution uncertainty (1812.07042v1)

Published 17 Dec 2018 in stat.CO

Abstract: Global sensitivity analysis (GSA) quantifies the influence of uncertain variables in a mathematical model. The Sobol' indices, a commonly used tool in GSA, seek to do this by attributing to each variable its relative contribution to the variance of the model output. In order to compute Sobol' indices, the user must specify a probability distribution for the uncertain variables. This distribution is typically unknown and must be chosen using limited data and/or knowledge. The usefulness of the Sobol' indices depends on their robustness to this distributional uncertainty. This article presents a novel method which uses "optimal perturbations" of the marginal probability density functions to analyze the robustness of the Sobol' indices. The method is illustrated through synthetic examples and a model for contaminant transport.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.